Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations
نویسندگان
چکیده
Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of problems involving nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a discrete approximation of its solution. In a second step we apply maximum entropy estimation (using moments of a Borel measure associated with the discrete solution) to obtain a smooth closed-form approximation. The approach is illustrated on a variety of linear and nonlinear ordinary differential equations (ODE), partial differential equations (PDE) and optimal control problems (OCP), and preliminary numerical results are reported.
منابع مشابه
Moment and SDP relaxation techniques for smooth approximations of nonlinear differential equations
Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a discrete approximatio...
متن کاملOn boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملAnalysis and Control of Partial Differential Equations using Occupation Measures
Context This work is in the line of research with the following issue: how to develop new convex optimization techniques based on semidefinite programming (SDP) and real algebraic geometry to solve optimal control problems (OCP) in a nonlinear setting. Recently, several research efforts allowed to solve numerically certain optimal control problems with polynomial data. The general idea is to re...
متن کاملA General Boundary Element Formulation for The Analysis of Viscoelastic Problems
The analysis of viscoelastic materials is one of the most important subjects in engineering structures. Several works have been so far made for the integral equation methods to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin viscoelastic...
متن کاملApplication of the linear Differential Equations on the Plane and Elements of Nonlinear Systems, In Economics
In recent years, it has become increasingly important to incorporate explicit dynamics in economic analysis. These two tools that mathematicians have developed, differential equations and optimal control theory, are probably the most basic for economists to analyze dynamic problems. In this paper I will consider the linear differential equations on the plane (phase diagram) and elements of nonl...
متن کامل